# Learning outcomes from Lecture 2

- Be able to explain why confining a particle to a box leads to quantization of its energy levels
- Be able to explain why the lowest energy of the particle in a box is not zero
- Be able to apply the particle in a box approximation as a model for the electronic structure of a conjugated molecule (given equation for E<sub>n</sub>).

# Assumed knowledge for today

Be able to predict the number of  $\pi$  electrons and the presence of conjugation in a ring containing carbon and/or heteroatoms such as nitrogen and oxygen.

#### **Chemistry 2**

Lecture 3

Particle on a ring approximation



### Particle-on-a-ring

Particle can be anywhere on ring



Ground state is motionless

# The de Broglie Approach

 The wavelength of the wave associated with a particle is related to its momentum:

$$p = mv = h / \lambda$$

For a particle with only kinetic energy:

$$E = \frac{1}{2} mv^2 = p^2 / 2m = h^2 / 2m\lambda^2$$

# The Schrödinger equation

- The total energy is extracted by the Hamiltonian operator.
- These are the "observable" energy levels of a quantum particle



### Particle-on-a-ring

- Ground state is motionless
- In higher levels, we must fit an integer number of waves around the ring



### "The particle on a ring"

The ring is a cyclic 1d potential



# The Schrödinger equation

The Hamiltonian has parts corresponding to *Kinetic Energy* and *Potential Energy*. In terms of the angle  $\theta$ :



# "The particle on a ring"

• On the ring, V = 0. Off the ring  $V = \infty$ .

$$\Psi = sin(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} sin(j\theta)$$
$$= \frac{\hbar^2 j^2}{2mr^2} sin(j\theta) = \varepsilon_j \Psi \qquad j = 1, 2, 3....$$

# "The particle on a ring"



 $\pi$ -system of benzene is like a bunch of electrons on a ring

### Particle-on-a-ring

Ground state is motionless



 $\Psi$  = constant

# "The particle on a ring"

• On the ring, V = 0. Off the ring  $V = \infty$ .

$$\Psi = cos(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} cos(j\theta)$$

$$\hbar^2 j^2$$

$$= \frac{\hbar^2 j^2}{2mr^2} cos(j\theta) = \varepsilon_j \Psi \qquad j = 0, 1, 2, 3....$$

# "The particle on a ring"

$$j = 2$$
 $j = 1$ 
 $j = 0$ 

# "The particle on a ring"

The ring is a cyclic 1d potential

$$\Psi = \sin(j\theta) \quad \Psi = \cos(j\theta)$$



### Application: benzene

**Question**: how many  $\pi$ -electrons in benzene?



**Answer**: Looking at the structure, there are 6 carbon atoms which each contribute one electron each. Therefore, there are 6

# "The particle on a ring"



are given by  $\varepsilon_n=2\hbar^2 l^2\pi^2/mL^2$ , what is the energy of the HOMO in eV? Question: if the energy levels of the electrons



that  $L = 6 \times 1.40 \text{ Å} = 8.4 \text{ 0Å}$ . From these therefore the HOMO must have j=1. We know **Answer**: since there are  $6 \pi$ -electrons, and

numbers, we get  $\varepsilon_j = 3.41 \times 10^{-19} J^2$  in Joules.

The energy of the HOMO is thus  $\varepsilon_1 = 3.41 \times 10^{-19} \text{J} = 2.13 \text{ eV}.$ 



$$j=0$$

#### benzene

**Question**: what is the length over which the  $\pi$ -electrons are delocalized, if the average bond length is 1.40 Å?

Answer: There are six bonds, which equates to  $6 \times 1.40 \text{ Å} = 8.40 \text{ Å}$ 



#### benzene

Question: how does the calculated value of the HOMO-LUMO transition compare to experiment?

corresponds to photons of wavelength **Answer**: The calculated energy of the HOMO-LUMO transition is 6.39 eV. This

experimental value (around 200 nm). which is not so far from the  $\lambda = hc/(6.39 \times 1.602 \times 10^{-19}) \sim 194 \text{ nm},$ 



Hiraya and Shobatake, J. Chem. Phys. 94, 7700 (1991)



#### benzene

and thus the HOMO-LUMO transition? Question: what is the energy of the LUMO



 $\epsilon_2$  = 1.365×10<sup>-18</sup>J = 8.52 eV. The energy of the HOMO-LUMO transition is thus 6.39 eV. energy of the LUMO is thus **Answer**:  $\varepsilon_i = 3.41 \times 10^{-19} J^2$  in Joules. The



#### Next lecture

 Quantitative molecular orbital theory for beginners

### Week 10 tutorials

 Schrödinger equation and molecular orbitals for diatomic molecules

### Learning Outcomes

- Be able to explain why confining a particle on a ring leads to quantization of its energy levels
- Be able to explain why the lowest energy of the particle on a ring is zero
- Be able to apply the particle on a ring approximation as a model for the electronic structure of a cyclic conjugated molecule (given equation for E<sub>n</sub>).

### **Practice Questions**

1. The particle on a ring has an infinite number of energy levels (since j = 0, 1, 2, 3, 4, 5 ...) whereas for a ring  $C_nH_n$  has only n p-orbitals and so n energy levels.

 $C_6H_6$ , for example, only has levels with j=3 (one level), j=1 (two levels), j=2 (two levels) and j=3 (one level)

- (a) Using the analogy between the particle on a ring waves and the  $\pi$ -orbitals on slide 17, draw the four  $\pi$  molecular orbitals for  $C_4H_4$  and the six  $\pi$  molecular orbitals for  $C_6H_6$
- (b) Using qualitative arguments (based on the number of nodes and/or the number of in-phase or out-of-phase interactions between neighbours) construct energy level diagrams and label the orbitals as bonding, non-bonding or antibonding
- (c) Based on your answer to (b), why is  $C_6H_6$  aromatic and  $C_4H_4$  antiaromatic?